skip to main content


Search for: All records

Creators/Authors contains: "Garoutte, Aaron"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Switchgrass (Panicum virgatum L.) remains the preeminent American perennial (C4) bioenergy crop for cellulosic ethanol, that could help displace over a quarter of the US current petroleum consumption. Intriguingly, there is often little response to nitrogen fertilizer once stands are established. The rhizosphere microbiome plays a critical role in nitrogen cycling and overall plant nutrient uptake. We used high-throughput metagenomic sequencing to characterize the switchgrass rhizosphere microbial community before and after a nitrogen fertilization event for established stands on marginal land. We examined community structure and bulk metabolic potential, and resolved 29 individual bacteria genomes via metagenomic de novo assembly. Community structure and diversity were not significantly different before and after fertilization; however, the bulk metabolic potential of carbohydrate-active enzymes was depleted after fertilization. We resolved 29 metagenomic assembled genomes, including some from the ‘most wanted’ soil taxa such as Verrucomicrobia, Candidate phyla UBA10199, Acidobacteria (rare subgroup 23), Dormibacterota, and the very rare Candidatus Eisenbacteria. The Dormibacterota (formally candidate division AD3) we identified have the potential for autotrophic CO utilization, which may impact carbon partitioning and storage. Our study also suggests that the rhizosphere microbiome may be involved in providing associative nitrogen fixation (ANF) via the novel diazotroph Janthinobacterium to switchgrass. 
    more » « less
    Free, publicly-accessible full text available May 1, 2024
  2. Metagenomes encode an enormous diversity of proteins, reflecting a multiplicity of functions and activities. Exploration of this vast sequence space has been limited to a comparative analysis against reference microbial genomes and protein families derived from those genomes. Here, to examine the scale of yet untapped functional diversity beyond what is currently possible through the lens of reference genomes, we develop a computational approach to generate reference-free protein families from the sequence space in metagenomes. We analyze 26,931 metagenomes and identify 1.17 billion protein sequences longer than 35 amino acids with no similarity to any sequences from 102,491 reference genomes or the Pfam database. Using massively parallel graph-based clustering, we group these proteins into 106,198 novel sequence clusters with more than 100 members, doubling the number of protein families obtained from the reference genomes clustered using the same approach. We annotate these families on the basis of their taxonomic, habitat, geographical, and gene neighborhood distributions and, where sufficient sequence diversity is available, predict protein three-dimensional models, revealing novel structures. Overall, our results uncover an enormously diverse functional space, highlighting the importance of further exploring the microbial functional dark matter. 
    more » « less
    Free, publicly-accessible full text available October 19, 2024
  3. Abstract

    To establish and spread in a new location, an invasive species must be able to carry out its life cycle in novel environmental conditions. A key trait underlying fitness is the shift from vegetative to reproductive growth through floral development. In this study, we used a common garden experiment and genotyping‐by‐sequencing to test whether the latitudinal flowering cline of the North American invasive plantMedicago polymorphawas translocated from its European native range through multiple introductions, or whether the cline rapidly established due to evolution following a genetic bottleneck. Analysis of flowering time in 736 common garden plants showed a latitudinal flowering time cline in both the native and invaded ranges where genotypes from lower latitudes flowered earlier. Genotyping‐by‐sequencing of 9,658SNPs in 446 individuals revealed two major subpopulations ofM. polymorphain the native range, only one of which is present in the invaded range. Additionally, native range populations have higher genetic diversity than invaded range populations, suggesting that a genetic bottleneck occurred during invasion. All invaded range individuals are closely related to plants collected from native range populations in Portugal and southern Spain, and population assignment tests assigned invaded range individuals to this same narrow source region. Taken together, our results suggest that latitudinal clinal variation in flowering time has rapidly evolved across the invaded range despite a genetic bottleneck following introduction.

     
    more » « less
  4. Abstract

    Global climate change and shifting land‐use are increasing plant stress due to abiotic factors such as drought, heat, salinity and cold, as well as via the intensification of biotic stressors such as herbivores and pathogens. The ability of plants to tolerate such stresses is modulated by the bacteria and fungi that live on or inside of plant tissues and comprise the plant microbiome. However, the impacts of diverse classes of beneficial members of the microbiome and the contrasting stresses that impact plants are most commonly studied independently of each other.

    Our meta‐analysis of 288 experiments across 89 studies moves beyond previous studies in that we simultaneously compare the roles of bacterial versus fungal microbiome members that live within plant tissues and colonize plant surfaces in ameliorating biotic versus abiotic sources of plant stress.

    The magnitude of microbial stress amelioration can be measured as the greater proportional impact of beneficial microbes on plant performance in more stressful environments. In the plant experiments we examine, the magnitude of microbial stress amelioration is substantial: it is 23% of the effect size of the typical impact of stress and 56% of the effect size of beneficial microbiome members in the absence of stress.

    The amount of benefit microbiome members confer to plants differs among classes of microbes, depending on whether plants are grown in stressful or non‐stressful environments. In the absence of stress, beneficial bacteria tend to confer greater plant benefits than do fungi. However, symbiotic fungi, especially arbuscular mycorrhizal fungi, more strongly ameliorate plant stress than do bacteria. In particular, beneficial microbes ameliorate salinity, foliar herbivory and fungal pathogen stress.

    These results highlight the fact that the impacts of beneficial and antagonistic components of the microbiome on plant performance depend on biotic and abiotic environmental contexts. Furthermore, beneficial microbes are especially critical for plant health in stressful environments and thus present opportunities to mitigate negative consequences of global change.

    A freeplain language summarycan be found within the Supporting Information of this article.

     
    more » « less